ISSN 1600-5368

Samuel J. Mugavero III, Irina V. Puzdrjakova, Mark D. Smith and Hans-Conrad zur Loye*

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail: zurloye@sc.edu

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (m–O) = 0.004 Å R factor = 0.026 wR factor = 0.052 Data-to-parameter ratio = 22.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 22 November 2004

Accepted 1 December 2004

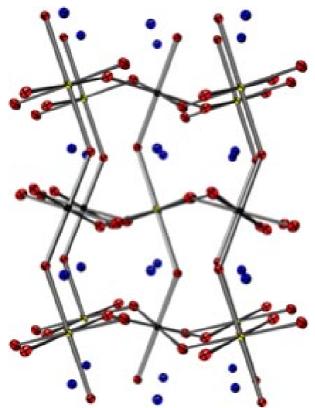
Online 11 December 2004

Sm₂NaIrO₆, a monoclinically distorted double perovskite

Single crystals of the lanthanide-containing iridate, disamarium sodium iridium hexaoxide, Sm_2NaIrO_6 , were prepared *via* high-temperature flux growth and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic space group $P2_1/n$ and is a double perovskite, consisting of a 1:1 ordered rock-salt-type lattice of corner-shared NaO₆ and IrO₆ distorted octahedra. Samarium occupies the eightfold coordination site generated by the connectivity of the octahedra.

Comment

Recently the crystal growth and characterization of the double perovskites Ln_2LiIrO_6 (Ln = La, Pr, Nd, Sm and Eu) and Ln_2NaMO_6 (Ln = La, Pr and Nd, and M = Ru and Ir) from molten hydroxide fluxes was reported (Gemmill *et al.*, 2004; Davis *et al.*, 2004; Mugavero *et al.*, 2005). High-temperature flux growth from molten hydroxides has proven to be an effective medium for oxide crystal growth. Sm₂NaIrO₆, a distorted double perovskite, was grown from a molten NaOH/ CsOH flux at 923 K.


In its ideal form, the cubic perovskite ABO₃ consists of corner-sharing BO_6 octahedra with the A cation occupying the 12-fold coordination site formed in the middle of a cube of eight such octahedra (Mitchell, 2002). The ideal double perovskite structure of the general formula $A_2BB'O_6$ is obtained when the B cation is substituted by a B' cation in an ordered 1:1 fashion, doubling the unit cell. The $P2_1/n$ space group allows for a 1:1 ordered arrangement of the B and B'cations in a rock-salt-type lattice and the tilting of the BO_6 and $B'O_6$ octahedra to accommodate the small size of the A cation (Woodward, 1997a,b). The Glazer tilt system assigned to the $P2_1/n$ space group is #10, $a^-a^-b^+$ (Glazer, 1972). Sm₂NaIrO₆ is a monoclinically distorted structure of an ideal double perovskite where the Na⁺ and Ir⁵⁺ cations occupy the two crystallographically independent octahedral sites (site symmetry $\overline{1}$, Wyckoff symbol 2*a*; site symmetry $\overline{1}$, Wyckoff symbol 2b), while the Sm^{3+} cations occupy the A site in an eightfold coordination environment (site symmetry 1, Wyckoff symbol 4e).

Experimental

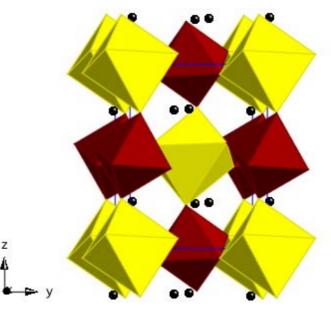
Single crystals of Sm_2NaIrO_6 were grown from an 'acidic' hightemperature hydroxide melt. Sm_2O_3 (Alfa Aesar 99.9%, 0.75 mmol), Ir (Engelhard, 99.9%, 0.5 mmol), NaOH (Fisher, ACS reagent, 3.0 g) and CsOH (Alfa Aesar, 98%, 2.0 g) were loaded into a silver tube that had been previously flame-sealed at one end. The top of the tube was crimped and folded three times before being placed upright into a programmable box furnace. The tube was heated to 923 K over a

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

inorganic papers

Figure 1

Octahedral tilting in Sm_2NaIrO_6 , with the [010] direction shown going into the page and displacement ellipsoids drawn at the 50% probability level. Sm^{3+} shown in blue, Ir^{5+} in black, Na^+ in yellow and O^{2-} in red.


period of 1 h, held at that temperature for 24 h and then cooled to room temperature by shutting off the furnace. The black dodecahedral-shaped crystals were removed from the flux matrix by dissolving the flux in water and isolating the crystals by vacuum filtration.

Crystal data

Sm ₂ NaIrO ₆	$D_x = 8.024 \text{ Mg m}^{-3}$
$M_r = 611.89$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3184
a = 5.4656 (2) Å	reflections
b = 5.8880(2) Å	$\theta = 2.6-35.0^{\circ}$
c = 7.8714 (3) Å	$\mu = 49.13 \text{ mm}^{-1}$
$\beta = 91.097 \ (1)^{\circ}$	T = 294 (1) K
$V = 253.27 (2) \text{ Å}^3$	Prism, black
Z = 2	$0.06 \times 0.04 \times 0.04~\mathrm{mm}$
Data collection	
Bruker SMART APEX CCD	1112 independent reflections
diffractometer	1049 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.032$
Absorption correction: multi-scan,	$\theta_{\rm max} = 35.1^{\circ}$
(SADABS; Bruker, 2001)	$h = -8 \rightarrow 8$
$T_{\min} = 0.075, T_{\max} = 0.140$	$k = -9 \rightarrow 8$
4588 measured reflections	$l = -12 \rightarrow 12$
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.052$ S = 1.131112 reflections 50 parameters

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0142P)^{2} + 3.1589P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 2.08 \text{ e } \text{ Å}^{-3}$ $\Delta\rho_{min} = -1.74 \text{ e } \text{ Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0085 (4)

Figure 2

Polyhedral view of Sm_2NaIrO_6 , approximately along [100]. IrO_6 octahedra are shown in red, NaO_6 octahedra in yellow and Sm atoms in black.

Table 1

Selected geometric parameters (Å, °).

Sm1-O2 ⁱ	2.293 (4)	Na1-O1	2.254 (4)
Sm1-O1 ⁱⁱ	2.339 (4)	Na1-O1 ^{vii}	2.255 (4)
Sm1-O2	2.340 (4)	Na1-O3 ^{viii}	2.313 (4)
Sm1-O3 ⁱⁱⁱ	2.348 (4)	Na1-O3 ⁱⁱⁱ	2.313 (4)
Sm1-O3 ⁱⁱ	2.552 (5)	$Ir1-O2^{v}$	1.965 (4)
Sm1-O1	2.623 (4)	Ir1-O2	1.965 (4)
Sm1-O1 ^{iv}	2.705 (4)	Ir1-01	1.968 (4)
$Sm1-O3^{v}$	2.896 (4)	Ir1-O1 ^v	1.968 (4)
Na1-O2 ^{vi}	2.254 (4)	$Ir1-O3^{v}$	1.970 (4)
Na1-O2 ⁱⁱ	2.254 (4)	Ir1-O3	1.970 (4)
Ir1-O1-Na1	144.0 (2)	Ir1-O3-Na1 ^x	139.2 (2)
Ir1-O1-Na1 $Ir1-O2-Na1^{ix}$	137.7 (2)	111-05-Na1	139.2 (2)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (v) -x + 1, -y + 1, -z; (v) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (vii) -x, -y, -z; (viii) -x, -y + 1, -z; (ix) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (x) x, y + 1, z.

The highest residual electron density and the deepest hole are located approximately 1 Å from Sm1.

Data collection: *SMART NT* (Bruker, 2001); cell refinement: *SAINT-Plus NT* (Bruker, 2001); data reduction: *SAINT-Plus NT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Department of Energy through grant DE-FG02-04ER46122 and the National Science Foundation through grant DMR:0134156. IVP acknowledges the 2004 NSF Summer Research Program in Solid State Chemistry (DMR:0303450) for financial support.

References

Bruker (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2001). SMART NT (Version 5.625), SAINT-Plus NT (Version 6.22) and SADABS (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.
- Davis, M. J., Mugavero, S. J. III, Glab, K. I., Smith, M. D. & zur Loye, H.-C. (2004). Solid State Sci. 6, 413–417.
- Gemmill, W. R., Smith, M. D. & zur Loye, H.-C. (2004). J. Solid State Chem. 177, 3560–3567.
- Glazer, A. M. (1972). Acta Cryst. B28, 3384-3392.

- Mitchell, R. H. (2002). *Perovskites: Modern and Ancient*. Ontario: Almaz Press.
- Mugavero, S. J. III, Smith, M. D. & zur Loye, H.-C. (2005). J. Solid State Chem. In the press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Woodward, P. M. (1997a). Acta Cryst. B53, 32–43. Woodward, P. M. (1997b). Acta Cryst. B53, 44–66.